CONVERSION OF DIINDOLYL METHANES TO 3-VINYLINDOLES. A SIMPLE SYNTHESIS OF THE INDOLE ALKALOID OLIVACINE.

Jan Bergman and Rene Carlsson

Department of Organic Chemistry, Royal Institute of Technology

S-100 44 Stockholm 70, Sweden

We have recently 1 developed a convenient synthesis of the anti-cancer active indole alkaloid ellipticine ($\underline{3}$) (based on thermolysis of the readily available compound $\underline{1}$).

Compound $\frac{1}{2}$ is prepared by condensation of 2-ethylindole with 3-acetylpyridine (yielding compound $\frac{1}{2}$ followed by quaternization with butyl bromide. We now wanted to apply a similar approach to the synthesis of the likewise anti-cancer active alkaloid olivacine ($\frac{5}{2}$), starting with 2-ethylindole and 2-methyl-3-formylpyridine. As expected, the condensation could not be stopped at the 1:1 stage, but proceeded further yielding the 2:1 condensation product ($\frac{6}{2}$), which, however, on thermolysis under reduced pressure split off 2-ethylindole yielding olivacine directly. The synthesis, which is much simpler than those previously reported $\frac{4-10}{2}$ for the synthesis of olivacine, is summarized below.

In a related experiment it was found that thermolysis of the known 13 2:1 condensation product ($\frac{8}{2}$) of indole and 3-acetylpyridine readily gave the new 3-vinylindole, 1-(3-indoly1)-1-(3-pyridy1)ethylene ($\frac{4b}{2}$) 14 in good yield (86%). Catalytic hydrogenation of $\frac{4b}{2}$ gave the known 15 compound ($\frac{9}{2}$), which has been used as the crucial intermediate in an interesting synthesis of ellipticine 15 . We believe that the attractiveness of this synthesis has now increased.

Thermolysis of $\underline{10}$ (\underline{cf} the preceding paper) similarly gave 2-methylindole and $\underline{11}$. The principle of thermolytic cleavage of bisindoles seems to be rather general for the preparation of indolenines ($\underline{in\ situ}$) and 3-vinylindoles, provided that the vinyl group is conjugated with an aromatic ring or a carbonyl group. Nonconjugated 3-vinylindoles should be expected to give oligomeric products ($\underline{e.g.}$ dimers) (\underline{cf} ref 16 and 17). In this connection it might be added that a Diels-Alder dimer of $\underline{4b}$ ($\underline{12}$) was formed as a minor product in some preparations of $\underline{4b}$. The mass spectrum $\underline{18}$ of $\underline{12}$ showed a diagnostic M-28 peak due to the expulsion of $\underline{C_2H_4}$ in a retro-Diels-Alder reaction, which is characteristic $\underline{19}$ for 2,3-unsubstituted 1,2,3,4-tetrahydrocarbazoles.

REFERENCES AND NOTES

- 1. J. Bergman and R. Carlsson, Tetrahedron Letters, 4663 (1977).
- 2. J. Bergman and R. Carlsson, J. Het. Chem., 9, 833 (1972).
- 3. (a) A. Dornow and H. Bormann, Ber., 82, 216 (1949).
 - (b) E. B. Sanders, H. V. Secor and J. I. Seeman, J. Org. Chem., 41, 2658 (1976).
- 4. J. Schmutz and H. Wittwer, Helv. Chim. Acta, 43, 793 (1960).
- 5. E. Wenkert and K. Dave, <u>J. Am. Chem. Soc.</u>, <u>84</u>, 94 (1962).
- 6. C. W. Mosher, O. P. Crews, E. M. Acton, and L. Goodman, J. Med. Chem., 9, 237 (1966).
- 7. J. P. Kutney and D. S. Grierson, Heterocycles, 3, 171 (1975).
- 8. T. Kametani, T. Suzuki, Y. Ichikawa, and K. Fukumoto, <u>J. Chem. Soc.</u>, <u>Perkin I</u>, 2102 (1975)
- 9. Y. Oikawa and O. Yonemitsu, J. Chem. Soc., Perkin I, 1479 (1976).
- 10. R. Besselièvre and H.-P. Husson, Tetrahedron Letters, 1873 (1976).
- 11. The postulated intermediate $\frac{7c}{2}$ should be readily dehydrogenated $\frac{12}{2}$.
- 12. M. Sainsbury, Synthesis, 437 (1977).
- 13. R. B. Woodward, G. A. Iacobucci and F. A. Hochstein, J. Am. Chem. Soc., 81, 4434 (1959).
- 14. M.p. 136-138°. MS: 221(16), 220(100), 219(64), 218(18), 217(5), 206(5), 205(29), 192(8), 191(8), 190(5), 115(8), 110(6), 109.5(7), and 96(7). Only peaks greater than 5 % of the base peak are listed.
- 15. M. Sainsbury and R. F. Schinazi, J. Chem. Soc., Perkin I, 1155 (1976).
- 16. J. Bergman and J.-E. Bäckvall, Tetrahedron, 31, 2063 (1975).
- 17. R. Bergamasco, Q. N. Porter, and C. Yap, Aust. J. Chem., 30, 1531 (1977).
- 18. M.p. 200-210⁰. MS: 441(11), 440(32), 439(17), 438(28), 412(5), 411(5), 362(14), 361(6), 360(15), 335(9), 334(22), 333(11), 332(6), 324(28), 323(100), 322(29), 321(13), 320(8), 256(6), 246(5), 245(23), 243(6), 231(6), 220(10), 219(11), 218(8), 205(7), 167(6), 166(6), 118(8), 117(8), and 51(8). Only peaks greater than 5 % of the base peak are listed.
- 19. F. E. Ziegler, E. B. Spitzner, and C. K. Wilkins, J. Org. Chem., 36, 1759 (1971).

 (Received in UK 24 July 1978; accepted for publication 18 August 1978)